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Spatial damping identification in the frequency domain – A Theoretical and
Experimental Comparison.

Journal of Sound and Vibration, 376:182 – 193, 2016
DOI: 10.1016/j.jsv.2016.04.006

Abstract

This paper deals with spatial damping identification methods. In contrast to the commonly
used damping methods (modal, proportional) the spatial damping information improves struc-
tural models with a known location of the damping sources. The Lee-Kim, Chen-Ju-Tsuei,
Fritzen IV and local equation of motion methods were theoretically and experimentally com-
pared. Experimentally, the spatial damping identification was tested against: modal and spa-
tial incompleteness, differences in viscous and hysteretic damping models, the performance of
identification methods and the effect of damping treatments. It was found that for a struc-
ture with a known equation of motion (beam, plate) the local equation of motion method is
more efficient and gives a more precise location of the damping. Full frequency response func-
tion (FRF) matrix methods can also identify the spatial damping, but are more demanding
because the numerical and measurement effort increases with n2, where n is the number of
measurement points and, consequently, the size of the FRF matrix.
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1 Introduction

Damping, combined with mass and stiffness, represents the dynamic properties of a structure,
and its identification is important for validating and building analytical/numerical models in
civil, mechanical and aerospace engineering. Damping in linear mechanical systems is normally
identified using a method such as logarithmic decay [1] in the time domain, the continuous wavelet
transform [2] and the Morlet wave [3] in the time-frequency domain or the half-power point [1],
the closed-form solution [4] and the first-order perturbation [5] in the frequency domain. In the
modal domain the Error Matrix Method was extended to locate the damping sources on the
structure [6]. However, most of the described methods can be applied to viscous damping, only.
Examples, where an exact damping spatial location is needed, are: the identification of damping
sources on existing structures and the precise application of a damping treatment. However, the
typically used damping-identification methods [1, 7] do not provide spatial information (damping
distribution throughout the structure).

An alternative approach is to use direct damping-identification methods that were developed
for the identification of the damping distribution directly from the frequency-response functions
(FRFs) without a transformation to the modal coordinates. The first is the widely used Fritzen
IV method [9], where IV stands for Instrumental Variable. Instrumental variable methods were
developed for an unbiased estimation of the model parameters [9, 10] in comparison with least-
squares methods, which are biased due to the noisy measurement data [9]. In 1996 Chen et al.
presented a method [11] that identifies the damping separately from the mass and stiffness based
on the imaginary and the real properties of the FRF. A simplified version of the Chen, Ju and
Tsuei’s [11] method is Lee and Kim’s dynamic stiffness method [12] (it requires only one matrix
inverse, resulting in a smaller error). To improve the damping identification on real structures
Arora et al. [13] proposed a two-step procedure. In the first step, the mass and stiffness matrices
are updated using FRF data, and in the second step, the damping matrix is identified using
updated mass and stiffness matrices from the previous step. The two-step approach relates the
displacements to the material properties, which can also be made using the local equation of
motion method [14], presented recently by Ablitzer et al. Some direct methods, not considered in
this research, are reviewed in [4, 5, 15].

Besides a theoretical and experimental comparison of the methods, this research focuses on the
experimental effects of: the modal incompleteness, the spatial incompleteness and the damping
model. Modal incompleteness deals with the limited frequency span over the number of modes,
whereas the spatial incompleteness covers the effects of the non-measured points on the structure.
Modal and spatial incompleteness for spatial damping have been studied numerically [5, 16] and
experimentally [15] on low-DOF models.

2 Theoretical background

In this section the background to the direct damping identification methods is briefly presented [1].
Each method will be presented for both types of the most common linear-damping models: the
viscous and the hysteretic.

In contrast to the viscous damping model, one must be careful when using a hysteretic model
as it does not satisfy the causality requirement [17, 18]. Further details are given in [19].

The starting point for the frequency-based, direct-damping identification methods is the fre-
quency response function (FRF) matrix H(ω). Assuming a viscous linear system and harmonic
excitation/response at frequency ω, the general second-order equation of motion with the viscous
damping can be written in the frequency domain as:[

K − ω2 M + iωC
]

X(ω) = F(ω) (1)

where M is the mass matrix, C is the viscous-damping matrix and K is the stiffness matrix. The
remaining parts of (1) are the imaginary unit i2 = −1, the Fourier transforms of the response
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X(ω) and the force vector F(ω). From Eq. (1), the FRF matrix H(ω) is defined as:

X(ω) = H(ω) F(ω) (2)

and furthermore:

H(ω) =
[
K − ω2 M + iωC

]−1
(3)

The dynamic stiffness matrix Z(ω) is defined as the matrix inverse of H(ω) for each frequency
point ω:

Z(ω) = H(ω)−1 =
[
K − ω2 M + iωC

]
(4)

Chen et al. [11] also define the undamped or “normal” FRF HN (ω) as:

HN (ω) = [ZN (ω)]
−1

=
[
K − ω2 M

]−1
(5)

2.1 Chen, Ju and Tsuei’s method

The method proposed by Chen et al. (1996) [11] identifies the damping matrix in a separate step
from the stiffness K and mass M matrix using measurements based on the imaginary and real
properties of the FRF as follows. The general equation of motion Eq. (1) can then be written as
a combination of the normal FRF HN (ω) and the damping:

[HN (ω)]−1 X(ω) + iωC X(ω) = F(ω) (6)

Multiplying both sides of Eq. (6) by HN (ω) from the left gives:

X(ω) + iωHN (ω) C X(ω) = HN (ω) F(ω) (7)

Defining the transformation matrix T(ω):

T(ω) = ωHN (ω) C (8)

and recalling that X(ω) = H(ω) F(ω), Eq. (7) can be simplified to:

HN (ω) = [I + i T(ω)] H(ω) (9)

The real and imaginary parts of Eq. (9) are then rewritten separately:

HN (ω) = [Re(H(ω)) − T(ω) Im(H(ω))]

+ i [T(ω) Re(H(ω)) + Im(H(ω))] (10)

The transformation matrix T(ω) and the normal FRF matrix HN (ω) are real by definition; there-
fore, it follows that the imaginary part of Eq. (10) equals 0:

Im(HN (ω)) = 0 (11)

= [T(ω) Re(H(ω)) + Im(H(ω))]

From Eq. (11) it is clear that the transformation matrix T(ω) can be defined only with the matrix
H(ω):

T(ω) = −Im(H(ω)) [Re(H(ω))]−1 (12)

The remaining real part of Eq. (10) defines the relationship between the normal and the measured
FRF matrix:

HN (ω) = Re(H(ω)) − T(ω) Im(H(ω)) (13)
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With the measured H(ω), the transformation matrix T can be identified. Consequently, from
Eq. (8) the damping matrix can also be identified as:

C = − 1

ω
[HN (ω)]−1

[
Im(H(ω)) [Re(H(ω))]−1

]
(14)

A similar procedure would result in the identification of the hysteretic damping matrix [20]:

D = −[HN (ω)]−1
[
Im(H(ω)) [Re(H(ω))]−1

]
(15)

2.2 Lee and Kim’s method

Lee and Kim (2001) [12] suggested a simpler procedure than Chen, Ju and Tsuei’s method, with
only one matrix inverse for a more numerical error-prone identification. Using Eq. (4) the viscous
damping matrix can be obtained directly from the imaginary part of the dynamic stiffness matrix
Z(ω):

Im(Z(ω)) = Im([H(ω)]−1) = ωC, (16)

Rearranging Eq. (16) to isolate the viscous-damping matrix C gives:

C =
1

ω
Im([H(ω)]−1) (17)

Method is not limited to the viscous damping [21], for example, the hysteretic-damping matrix
version of Eq. (17) is:

D = Im([H(ω)]−1) (18)

2.3 Instrumental variable method

The instrumental variable (IV) method is used to estimate the causal relationships in economet-
rics [5]; Fritzen (1986) [9] applied the method to structural dynamics. From Eq. (4) it follows that
multiplying the FRF matrix H(ω) by the dynamic stiffness Z(ω) results in the identity matrix I.
With a measured H(ω), the error E(ω):

H(ω) Z(ω) = I + E(ω) (19)

can therefore be minimised for the structural parameter (M, K, C, D) identification via the
dynamic stiffness Z(ω) Eq. (4):

Z(ω) =
[
−ω2 M + iωC + K

]
=
[
−ω2 I iωI I

]  M
C
K

 (20)

Combining Eq. (19) and Eq. (20) gives:

[
−ω2 H(ω) iωH(ω) H(ω)

]︸ ︷︷ ︸
A(ω)

 M
C
K


︸ ︷︷ ︸

P

= I + E(ω) (21)

The structural parameters P are estimated from Eq. (21) as:

P = [A(ω)]−1 (I + E(ω)) = [A(ω)]−1 I + [A(ω)]−1 E(ω) (22)

where [A(ω)]−1 E(ω) represents the systematic error (bias) in the parameter estimation. For an
unbiased estimation of P we now define a new variable named the instrumental variable IV,
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which is correlated with P and uncorrelated with the systematic errors [9] and has the following
properties:

plim
p→∞

{
1

p
IVT E

}
= 0 and nonsingular (23)

where plim denotes probability limit and p is the number of measurements. Eq. (23) implies
that the bias is reduced to zero IVT E = 0 if the estimation is made using a large number of
measurement points. To continue, the error E is isolated from Eq. (21) and both sides have to be
multiplied by instrumental variable IVT :

IVT E(ω) = IVT I − IVTA(ω) P (24)

Taking account of the definition Eq. (23), the left-hand side of Eq. (24) equals 0. The structural
parameters P are finally estimated from Eq. (24):

P =
[
IVTA(ω)

]−1
IVT I (25)

The choice of instrumental variable is open to the user; Fritzen [9] and Phani and Wood-
house [15] recommend using a reconstructed FRF Eq. (2) from the matrices (M, C and K),
identified using Chen, Ju and Tsuei’s or Lee and Kim’s method IV(ω) = H(ω)reconstructed. The
iterative form of Fritzen’s IV method (to use the identified parameters for the next step instru-
mental variable) improves the parameter estimation [9, 15] and can be regarded as an iterative
version of Lee and Kim’s method with a predefined convergence criterion [5]. For the hysteretic
version of the method the hysteretic damping i D instead of the viscous damping part iωC should
be used in the respective equations.

2.4 Local equation of motion method

The method recently presented by Ablitzer et al. [14] is, in this paper, extended for beam structures
and for viscous damping. The equation of motion for the displacement response w of an isotropic
Euler-Bernoulli beam with hysteretic damping in the steady state is [22]:

ρA
∂2w

∂t2
+ E(1 + i η) I

∂4w

∂x4
= f(x, t) (26)

where ρ is the density, A is the cross-section, E is the elastic modulus, η is the hysteretic damping
ratio, I is the second moment of area and f(x, t) is the point harmonic excitation force at the
frequency ω, respectively. The viscous damping [23] equation differs only slightly:

ρA
∂2w

∂t2
+ E I

∂4w

∂x4
+ γ

∂w

∂t
= f(x, t) (27)

where γ is the viscous damping constant per unit length. the harmonic response w(x, t) can be
written using the method of separation of variables as:

w(x, t) = W (x) sin(ω t) (28)

where W is response of the beam and is only dependent on the position on the beam x. The
designation of the dependency on x will be omitted from here on for reasons of clarity. The partial
time derivatives in Eq. (26) and Eq. (27) can then be expressed as:

∂2w

∂t2
= −ω2W sin(ω t) (29)

and:

∂w

∂t
= iωW sin(ω t) (30)
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The fourth derivative is approximated at the measurement point j by the finite-difference scheme
δ4j :

∂4w

∂x4
= δ4j sin(ω t) (31)

δ4j =
1

∆4
x

(Wj+2 − 4Wj+1 + 6Wj − 4Wj−1 +Wj−2) (32)

where ∆x is the measurement mesh spacing. Combining Eq. (26) with Eq. (29) and Eq. (31) for
the measurement point j we obtain:

−ρAω2Wj sin(ω t) + Ej(1 + i ηj) I δ
4
j sin(ω t) = f(xj , t) (33)

When the excitation is applied outside the observation area (Fig. 1), the right-hand side of Eq. (33)
is f(xj , t) = 0 and Eq. (33) can be separated into real and imaginary parts:

Ej =
ρAω2

I
Re

[
Wj

δ4j

]
(34)

ηj =
ρAω2

E I
Im

[
Wj

δ4j

]
(35)

For a viscous system the real part is the same as in Eq. (34) and the damping per unit length γj
at the measurement point j is:

γj = − Ej I

ω
Im

[
δ4j
Wj

]
(36)

The discrete viscous damping cj is obtained from the damping per unit length γj as:

cj = γj ∆x (37)

The presented approach is straightforward to use, but better results due to measurement-noise
amplification in the fourth-order derivation can be obtained with a two-step regularization [14].
First, both fields δ4j and Wj are multiplied by a spatial Tukey window for the boundary-effects
attenuation and in the second step each field is convolved with the discrete spatial response of a
low-pass filter. The width of the filter kernel is defined by the spatial cut-off wavelength λc, e.g.,
λc = 50 mm, details are given in [14].

3 Experiments

An experiment was conducted on the three equal-sized, free-free, beam specimens to compare
the direct-damping identification methods. The specimens are: a) a plain beam - beam A, b)
with an asymmetrically added local viscous damper - beam B and c) with a constrained layer
damping (CLD) - beam C, see Fig. 2. The beam specimens B and C have an asymmetrically
applied damping treatment over a restricted area of the beam in order to know the damping
spatial location. Three samples were considered to emphasize the effect of the different damping
treatments on the identified spatial location in the subsequent discussion.

3.1 Plain free-free beam

The beam A was a plain steel beam with a constant cross-section h× b = 1 mm × 30 mm, length
l = 400 mm, mass m = 92.6 g and Young’s modulus E = 210000 MPa. The beam dimensions were
selected to have a low modal overlap and to have a large number of modes in the frequency span
up to 3000 Hz. The beam is shown in Fig. 2(a). Two soft springs (stiffness ≈ 50 N/m) were used
at each beam boundary in the y-direction to limit the rigid-body translation after the impact.
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3.2 Free-free beam with added discrete viscous damper

The beam B was a similar steel beam to beam A, but an additional viscous damper was added be-
tween points 5 and 8, see Fig. 2(b). The discrete damper is based on the design of Rijnen et. al. [24],
with each damper being made from two rubber blocks of size 5x5x1 mm glued with cyanoacrylate
to the beam and connected with aluminium struts of size 80x5x5 mm.

3.3 Free-free beam with added constrained layer damper

The beam C was the steel beam used as beam A, but it had attached a constrained layer damper,
as shown in Fig. 2(c). The visco-elastic layer for the application was 3M 112P02 damping ma-
terial [25]. The steel constraining layer was of the same material and thickness as the beam in
order to maximize the damping [25]. Holes were drilled in the constraining layer to measure th
responses of the beam, only.

3.4 Measurement setup

The measurement setup is shown in Fig. 3. A custom-made solenoid impactor with a PCB 086E80
force sensor was used for the repeatable impulse excitation (described later). The response (ve-
locity) measurements employed a Polytec PDV100 laser vibrometer. The impactor/laser-based
measurement allows for a non-contact measurement without any structural modification due to
the added stiffness or mass from the sensors or shakers. The data acquisition and the signal
processing were undertaken in the custom python software environment using the pyDAQmx li-
brary [26] to interface with the NI 9215 acquisition hardware. The sampling rate was 100 kHz and
the signal was captured for 10 seconds. Other details considered during the experiment are:

• The structure is sequentially excited at 15 points and responses are measured at the same
15 points in the y direction (15x15 excitation-response pairs, n = 15), as shown in Fig 3

• For the local equation of motion method (see Section 2.4) a denser measurement mesh is
needed due to the fourth-order spatial differentiation and subsequent filtering, see Eq. (32).
The structure was excited at point 15 and between points 3 and 11 an additional 100, equally
spaced, responses were measured to obtain the 2.5-mm-measurement mesh.

• Internal low- and high-pass filters in the PDV100 vibrometer were set to 22 kHz and 0.1 Hz,
respectively [27].

• The instrumentation phase error was compensated using the time-shift approach from [15]

• Each excitation-response point was measured three times to obtain the averaged H1 estima-
tor (mobility FRF).

• The mobility FRFs were divided by iω in the frequency domain to obtain the receptance
FRFs [1].

3.4.1 Solenoid impactor

The solenoid impactor is based on the designs of [28, 29] and is built using a 24-V push-type
solenoid with a 30-mm diameter. For a faster acceleration of the solenoid core and thus the
impact force, the solenoid should be driven at a higher voltage (due to the solenoid’s winding
inductance). The impact is triggered using a microcontroller-based MOSFET switch with a mi-
crosecond resolution. For a 40-V supply a solenoid needs 5 milliseconds of open switch to travel
5 mm and impacts with a 14-N peak force and a duration of approximately 0.15 ms, see Fig. 4.
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4 Analysis and discussion

For each beam 675 (225 points with 3 averages) measured responses were assembled into a full FRF
matrix of size 15×15, used by the direct damping identification methods. Fig. 5 shows an example
of the measured receptance magnitude FRF at the pair 15-10 for all three beams; where 15-10
denotes the 15th excitation and the 10th response point (this designation will be used throughout
the paper). From the FRFs it is clear that the damping treatment of beams B and C affects the
high-frequency region more than the low-frequency region. Furthermore, the added stiffness and
the mass due to the damping treatment barely shift the eigenfrequencies, see Fig. 5.

In contrast to the damping amplitudes at the eigenfrequencies, the damping spatial location
is the focus of this research. Before using viscous and hysteretic damping matrix identification
methods, the measured FRFs have to be tested for repeatability, linearity and most importantly
for FRF reciprocity. For a damping model with a symmetric damping matrix the reciprocity is
expected [30]. Nevertheless, the measured FRFs deviate from reciprocity in some details (see
Fig. 6), which is often the case in experimental measurements [15, 31]. The observed deviations
of the reciprocity can be eliminated using FRF matrix symmetrisation at every frequency point
using [32]:

H(ω) = 0.5
[
H(ω) + HT (ω)

]
(38)

Any non-symmetry in the identified damping matrices after this step is due to the identification
procedure only.

4.1 Modal incompleteness

The modal incompleteness is presented in detail using the Lee-Kim method, see Eq. (17). Fig. 7
shows the absolute values of the identified viscous damping matrix C for beam B using a frequency
range of five (0-200 Hz), ten (0-1100 Hz) and fifteen modes (0-3000 Hz). The larger numerical
values (e.g. 150 Ns/m in Fig. 7) represent areas of higher damping. The identified matrices are
symmetric.

Focusing on the identified values in Fig. 7 reveals higher damping values at the points of the
applied damping for beam B (left point 4 and right point 9 of the discrete damper).

Comparing the high modal incompleteness with the low incompleteness model it is clear that
the spatial location of the damping becomes localised when the modal incompleteness is sufficiently
low, see Fig. 7. The frequency range of at least ten modes should be used for an accurate viscous
damping location - similar conclusions were found in a theoretical study [16].

A theoretical explanation for the modal incompleteness on the identification of the spatial
damping matrix C seen in Fig. 7 is given in [33, 34, 16]. The authors conclude that it is impossible
to identify the structural parameters of a real mechanical system from a FRF matrix, measured
over a limited frequency range.

Modal incompleteness affects the Chen-Ju-Tsuei and Fritzen methods in a similar way to the
Lee-Kim method, as all three methods are based on the complex properties of the FRF function,
but for reasons of brevity the details are not provided here. The local equation of motion method
requires a different analysis and will be discussed later.

4.2 Spatial incompleteness

The spatial incompleteness test was made using the full FRF matrix (15 modes) with deleted rows
and columns. These deleted rows and columns can be understood as degrees of freedom (DOF)
that were not measured (columns represent response DOFs and rows represent excitation DOFs).

Fig. 8 shows the identified matrix using the Lee-Kim method for four DOFs (i.e., 1, 5, 10, 15)
and eight DOFs (i.e., 1, 3, 5, 7, 9, 11, 13, 15). Comparing the results for the 15 modes shown in
Fig. 7 with Fig. 8 the redistribution of damping over the neighbouring spatial location is observed.
The high damping area around the pair 4-9 in Fig. 7 (15 modes) is in the spatially incomplete
cases redistributed because of the missing information. In the case of 8 DOF the redistribution
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is to the pair 5-11 and in case of 4 DOF over the complete damping matrix. Low DOF models
also tend to have larger damping values because the amount of damping present in the structure
is redistributed over fewer DOFs.

The spatial incompleteness is related to the modal incompleteness [33, 34, 16], e.g., from the
experimental modal analysis it is clear that the number of extracted mode shapes depends on the
FRF matrix H(ω) shape.

4.3 Viscous vs. hysteretic damping

Fig. 9 shows the absolute values of the identified hysteretic damping matrix of beam B using the
hysteretic Lee-Kim method (Eq. 18) for a frequency span of 15 modes. The identified damping
distribution is similar to the viscous one, see the 15 modes result in Fig. 7.

If the comparison with the classic approach using hysteretic proportional damping [1] is made,
the damping values close to the pair 4-9 are approximately 10 % (whereas the other points are
2 %) of the stiffness value for the same coordinate. The identified hysteretic damping values
could be approximated as the fractions of the stiffness D = β10 K10 + β2 K2, where βp is the
proportional damping factor, p is the damping value index and Kp is the stiffness matrix of the
non-zero elements over the points of different damping values.

The localisation performance of the identification method is independent of the choice between
the hysteretic and the viscous model. The advantage of using the hysteretic model over the viscous
thus lies in its ability to be approximated with the stiffness matrix, but care must be taken as the
model does not satisfy the causality requirement [17, 18].

4.4 Identification methods

In this section the Lee-Kim (Eq. 17), Chen-Ju-Tsuei (Eq. 14), Fritzen IV (Eq. 25) and the local
equation of motion method (Eq. 36) are compared. Fig. 10 shows the identified viscous damping
matrix (frequency span of 15 modes) for the Chen-Ju-Tsuei and Fritzen IV method and Fig. 11 for
the local equation of motion method. The Lee-Kim and Chen-Ju-Tsuei methods give comparable
results with regards to values and locations. On the other hand, the Fritzen IV method gives
damping values of the same order, but the damping locations around the left point - 5 on the
beam B are distorted. The identified damping matrix C of the Fritzen IV method is also more
robust with respect to noise than the Lee-Kim and Chen-Ju-Tsuei method (e.g., the values at
the points outside the damped region close to zero - no damping there). Similar conclusions were
found in [15]

A direct comparison of the results from Fig. 10 with the local equation of motion is not
possible; the result of the local equation of motion method is not the damping matrix C, but
the local damping value at each measuring point. The damping is also identified at the selected
frequency, only.

Fig. 11 shows the identified damping with the local equation of motion method for the fre-
quencies 1150, 1840 and 3100 Hz with a spatial cut-off of λc = 20 mm at the location between
30 and 240 mm of the discretely damped beam - B. Higher damping values can be found at 120
mm and at 200 mm (location of the discrete damper), see Fig. 2. The lower frequencies are more
contaminated with noise (locations 50-100 mm).

If the structure has a known equation of motion (plate, beam) then the local equation of motion
method can be used as it is more robust with respect to modal and spatial incompleteness (due to
the required finer measurement mesh and the easier measurement procedure for obtaining a large
number of responses). On the other hand, full FRF matrix-identification methods do not require
any a-priori knowledge about the structure under investigation.

4.5 Effect of damping treatment on the spatial location

In this section the Lee-Kim method for a frequency span of 15 modes is used to evaluate the
different damping treatments. The identified viscous damping matrix for beam B was already
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shown in Fig. 7 - 15 modes. The identified viscous matrices for the remaining two beams are
shown in Fig. 12. On the plain beam A there are higher damping values identified at the points
corresponding to the beam boundaries, where the beam was suspended and an additional soft
spring was attached, i.e., at 1-1 and 15-15. The identified damping values of the non-boundary
points for beam A are two orders of magnitude lower than for beam C with the CLD treatment.
Beam C has more pronounced damping values around points 5-8, which corresponds to the location
of the constraining layer damping treatment. The identified damping matrices of beams A and C
are also symmetric.

The relationship between the physical location of the damping treatment and the location of
the damping values in the identified damping matrix is not always straightforward (example of
the identified damping of the beams B and C, see Fig. 7 and Fig. 12). The major damping values
occur close to the main matrix diagonal.

5 Conclusion

The effectiveness of an experimental, viscous-damping, spatial location identification was analysed.
A special measuring setup was employed to measure the full FRF matrix of size 15×15 for three
different beam configurations (plain and with discrete and constrained layer damping treatments).
The following conclusions can be drawn:

• In the experiment a frequency range of 10 modes is sufficient for the spatial location identi-
fication on the beam, similar to the theoretical findings of Prandina et. al. [16].

• The identified viscous and hysteretic damping matrices have similar spatial distributions.

• Lee-Kim, Chen-Ju-Tsuei, Fritzen-IV and the local equation of motion methods are able to
identify the damping spatial distribution for discrete, plain and constrained layer damped
beam configurations. The damping spatial location of the CLD treatment differs significantly
from the discretely damped (even if it was applied at the same locations).

If the structure has a known equation of motion (plate, beam) then the local equation of
motion method is more efficient and gives a more precise location of the damping. Full FRF
matrix methods can identify the spatial damping, but are more demanding because the numerical
and measuring effort increases by n2, where n is the number of measuring points and consequently
the size of the FRF matrix.
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[29] J. Pribošek and J. Diaci. Electromagnetic microforging apparatus for low-cost fabrication of
molds for microlens arrays. Journal of Micromechanics and Microengineering, 25(6):065018,
2015.

[30] J. Woodhouse. Linear damping models for structural vibration. Journal of Sound and Vi-
bration, 215(3):547 – 569, 1998.

[31] F.E. Udwadia. A Note on Nonproportional Damping. Journal of Engineering Mechanics,
2009.

[32] I.Y. Bar-Itzhack. Matrix Symmetrization. Journal of Guidance, Control, and Dynamics,
21(1):178–179, 1998.

[33] A. Berman and W.G. Flannelly. Theory of Incomplete Models of Dynamic Structures. AIAA
Journal, 9(8):1481–1487, 1971.

[34] A. Berman. System identification of structural dynamic models – Theoretical and practical
bounds. In 25th Structures, Structural Dynamics and Materials Conference. AIAA, Palm
Springs, CA, 1984.

12



response points

j+1 j j-1

excitation

observation area

Figure 1: Local equation of motion method; excitation point and observation area.

x
z

y

(a)

(b)

measurement-excitation point

(c)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

constraining layer

1 2 3 4
5 6 7 8

9 10 11 12 13 14 15

rubber block

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h

b

Figure 2: (a) plain beam specimen - beam A, (b) beam with added discrete viscous damper -
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Figure 5: Receptance magnitude FRF plot for point 15-10.
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Figure 6: Reciprocity FRF plot for discretely damped beam B.
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Figure 7: Identified absolute valued viscous-damping matrix for beam B, 5, 10 and 15 modes.
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Figure 8: Identified absolute valued viscous-damping matrix for the beam B of the reduced FRF
matrix.

15



1 5 10 15

response point

1

5

10

15

e
xc

it
a
ti

o
n

 p
o
in

t
hysteretic

0

115000

230000

[N
/m

]

Figure 9: Identified absolute valued hysteretic-damping matrix for the discretely damped beam
B.
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Figure 10: Identified absolute valued viscous-damping matrices for beam B.
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